

Note

A new prenylated isoflavone from *Tephrosia tinctoria*

B Anil Kumar Reddy, S Ibrahim Khalivulla &
D Gunasekar*

Natural Products Division, Department of Chemistry, Sri
Venkateswara University, Tirupati 517 502, India
E-mail: duvvurusekarg@rediffmail.com

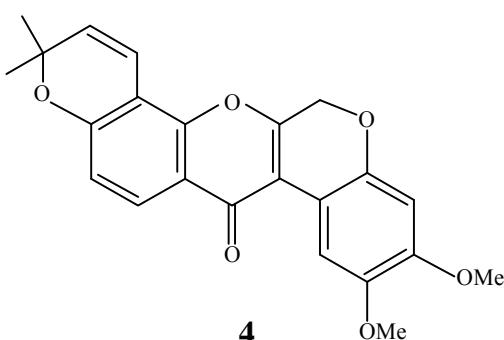
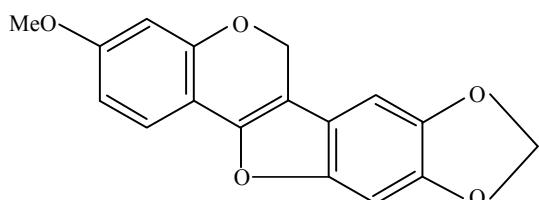
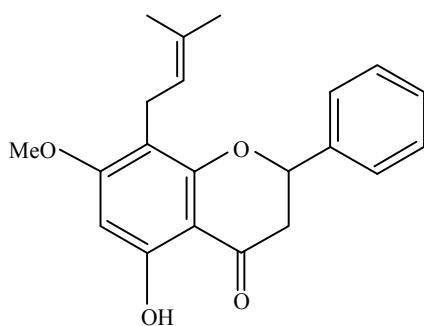
Received 9 May 2006; accepted (revised) 20 September 2006

A new prenylated isoflavone, 7-*O*-geranylbiochanin A **1** has been isolated from the roots of *Tephrosia tinctoria*, together with three previously known compounds, 7-*O*-methylglabranin **2**, flemichapparin B **3** and dehydrodeguelin **4**. The structures of the compounds, **1** - **4** have been established by spectroscopic methods, including analysis by 2D NMR spectroscopy.

Keywords: *Tephrosia tinctoria*, Isoflavone

IPC: Int.Cl.⁸ C07D

Tephrosia PERS. (Fam: Leguminosae, Sub fam: Papilionoideae) is a large tropical and sub-tropical genus estimated to contain 300 species¹. The genus *Tephrosia* is known to elaborate a rich variety of flavonoids and isoflavonoids². *Tephrosia tinctoria* Pers. is an erect undershrub widely distributed in Talakona forest of Andhra Pradesh, South India³. As there is no record of any phytochemical work on *T. tinctoria*, we have examined the roots of this species and report herein the isolation and structure elucidation of a new prenylated isoflavone, 7-*O*-geranylbiochanin A **1** together with three known compounds, 7-*O*-methylglabranin **2**, flemichapparin B **3** and dehydrodeguelin **4**.




Results and Discussion

Compound **1**, obtained as pale yellow amorphous powder, showed $[M + H]^+$ peak at m/z 421 in the positive ion FABMS corresponding to the molecular formula $C_{26}H_{28}O_5$. This was corroborated by the ^{13}C NMR spectrum, which showed signals for all the 26 carbons present in the molecule. The UV spectrum showed absorption maxima at 262 and 327 nm, characteristic of an isoflavone derivative⁴. The 1H NMR spectrum of **1** showed a sharp signal at δ 7.90 (1H, s), typical of the proton at C-2 of an isoflavanoid skeleton. Addition of NaOAc caused no shift in band II UV absorption maximum indicating the absence of

a free hydroxyl at C-7. A bathochromic shift of 11 nm in band I UV absorption maximum with $AlCl_3$ and a downfield 1H NMR signal at δ 12.82 in **1**, suggested the presence of a chelated hydroxyl at C-5. The IR spectrum exhibited absorption bands for chelated hydroxyl (3376 cm^{-1}), conjugated carbonyl (1646 cm^{-1}), olefin (1415 cm^{-1}) and ether (1179 cm^{-1}) functionalities.

The 1H NMR spectrum of **1** showed two singlet signals at δ 6.12 and 6.29, which correlated to carbons at 99.6 (C-6) and 94.4 ppm (C-8), in the HSQC spectrum, were characteristic of H-6 and H-8 protons of ring A. It also showed two sets of *ortho*-coupled doublets ($J = 8.8$ Hz) at δ 6.95 and 7.44, integrating for two protons each, correlating with C-3' and C-5' (114.0 ppm) and C-2' and C-6' signals (130.1 ppm), respectively in the HMBC spectrum (**Figure 1**), were assigned to H-3', 5' and H-2', 6' protons of ring B. A sharp three-proton singlet at δ 3.82 was attributed to a methoxyl group and was placed at C-4' as it showed 3J correlation with this carbon at 159.7 ppm in the HMBC spectrum.

The 1H NMR spectrum of **1** further showed three olefinic methyl singlets δ (1.57, 1.65, 1.81), two multiplet methylene signals (2.06, 2.08), an oxygenated doublet methylene signal (4.54) and two triplet vinyl proton signals (5.03, 5.234) assignable to either geranyl or neryl moiety. The ^{13}C NMR data, particularly the chemical shifts of the methyl at C-3'' and the C-4'' methylene, aid in distinguishing geranyl from neryl side chain. The chemical shifts at 16.1 and 39.6 ppm observed for methyl and methylene groups, respectively, confirmed the presence of a geranyl side chain⁵ in **1**. The geranyl moiety was placed at C-7 as the geranyloxy methylene protons at C-1'' correlated to C-7 of the isoflavone nucleus in the HMBC spectrum. Moreover, the interactions observed in the 2D phase-sensitive NOESY (**Figure 1**) experiment between the methylene protons at C-1'' and H-6 and H-8 aromatic protons unambiguously confirms the presence of an *O*-geranyl moiety at C-7 position. On the basis of the foregoing spectral studies, the structure of **1** was elucidated as 5-hydroxy-4'-methoxy-7-*O*-geranyl isoflavone (or 7-*O*-geranyl-biochanin A). Incidentally, the isolation of **1**

constitutes the rare occurrence of an *O*-geranylated isoflavanone from a natural source.

The structures of known compounds, **2**, **3** and **4** were established by comparison of their physical and spectral data with literature values⁶⁻⁸.

Experimental Section

General. Melting points were determined on a Kofler hot-stage apparatus and are uncorrected. IR spectra were recorded in KBr discs on a Perkin-Elmer 283 double beam spectrophotometer and UV spectra

on a Shimadzu UV-240 spectrophotometer. NMR spectra were run on a Bruker instrument equipped with a 5 mm ¹H and ¹³C probe operating at 400 and 100 MHz, respectively, using CDCl₃ with TMS as internal standard (chemical shifts in δ , ppm). ¹H assignments were made using 2D-COSY and NOESY (mixing time 500 ms) while ¹³C assignments were made using HSQC and HMBC experiments. FABMS was recorded on VG Autospec - 251M mass spectrometer using *m*-nitrobenzyl alcohol as a matrix. ESITOFMS is recorded on an API Q-STAR PULSA

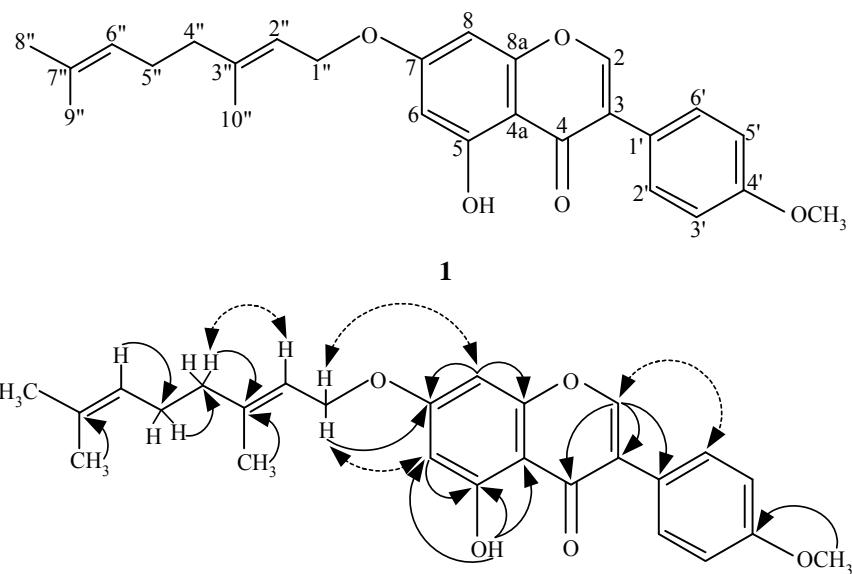


Figure 1—Significant HMBC (\rightarrow) and NOESY (\leftrightarrow) Correlations observed in **1**

of Applied Bio-system. Column chromatography (CC) was performed on Acme silica gel finer than 200 mesh (0.08 mm).

Plant material. The roots of *T. tinctoria* were collected from Talakona forest, Andhra Pradesh, South India in October 2003. A voucher specimen (DG-009) has been deposited in the Herbarium of the Department of Botany, Sri Venkateswara University, Tirupati, India.

Extraction and Isolation.

Air-dried and coarsely powdered roots (3 kg) of *T. tinctoria* were extracted successively with *n*-hexane, Me_2CO and MeOH . The *n*-hexane and Me_2CO extracts were found to be similar on TLC and hence combined and evaporated *in vacuo* to yield a dark brown residue (30 g). It was purified over a silica gel column using *n*-hexane and EtOAc step gradient as eluents. The *n*-hexane- EtOAc , 7:3 and 1:1, eluates yielded **1** (15 mg) and **2** (8.5 mg), respectively. The MeOH extract (20 g) was purified over a silica gel column using *n*-hexane- EtOAc step gradient mixtures. The *n*-hexane- EtOAc , 4:6 and 2:8, eluates yielded **3** (10 mg) and **4** (18 mg), respectively.

7-O-geranylbiochanin A 1: Pale yellow amorphous powder (CHCl_3), m.p. 116–18°C; UV (MeOH): 262 (4.5), 327 (3.6); (NaOAc) 262, 330; (AlCl_3) 273, 310; (NaOMe) 272, 327 nm; IR (KBr): 3376 (–OH), 2920 (–OMe), 2851, 1646 ($>\text{C}=\text{O}$), 1571, 1513, 1415 ($\text{C}=\text{C}$), 1291, 1250, 1179 (C–O–C), 1061, 1023, 877, 834, 728 cm^{-1} ; ^1H NMR (CDCl_3): δ 12.82 (1H, s, OH-5), 7.90 (1H, s, H-2), 7.44 (2H, d, J = 8.8

Hz, H-2', 6'), 6.95 (2H, d, J = 8.8 Hz, H-3', 5'), 6.29 (1H, s, H-8), 6.12 (1H, s, H-6), 5.23 (1H, t, J = 6.7 Hz, $\text{CH}=\text{}$, H-2''), 5.03 (1H, t, J = 6.7 Hz, $\text{CH}=\text{}$, H-6''), 4.54 (2H, d, J = 6.7 Hz, CH_2 , H-1''), 3.82 (3H, s, OMe-4''), 2.08 (2H, m, CH_2 , H-5''), 2.06 (2H, m, CH_2 , H-4''), 1.81 (3H, s, Me-10''), 1.65 (3H, s, Me-8''), 1.57 (3H, s, Me-9''); ^{13}C NMR (CDCl_3): δ 181.1 (C-4), 160.9 (C-7), 160.6 (C-5), 159.7 (C-4''), 155.0 (C-8a), 152.5 (C-2), 138.6 (C-3''), 132.0 (C-7''), 130.1 (C-2', 6'), 123.6 (C-6''), 123.5 (C-3), 123.1 (C-1'), 120.9 (C-2''), 114.0 (C-3', 5'), 106.1 (C-4a), 99.6 (C-6), 94.4 (C-8), 67.2 (C-1''), 55.3 (OMe-4''), 39.6 (C-4''), 26.3 (C-5''), 25.5 (C-8''), 17.6 (C-9''), 16.1 (C-10''); FABMS (positive ion mode): m/z 421 [$\text{M} + \text{H}]^+$, 405, 391, 363, 351, 337, 297, 285, 267, 165, 154, 136, 121, 107, 91, 81; ESITOFMS: m/z 443.1879 [$\text{M} + \text{Na}]^+$, 421.1977 [$\text{M} + \text{H}]^+$ (Calcd for $\text{C}_{26}\text{H}_{29}\text{O}_5$: 421.1937).

Acknowledgement

The authors are thankful to Dr J P Brouard, MNHN, Paris, France for providing mass spectral data. Thanks are due to Dr K Madhava Chetty, Herbarium Keeper, Department of Botany, S V University for his assistance in the collection and identification of the plant material.

References

- Willis J C, *The Dictionary of Flowering Plants and Ferns*, revised by Shaw H K A, 8th Edn, (Cambridge University Press, Cambridge), **1973**, p. 1135.

2 Dewick P M, *The Flavonoids: Advances in Research since 1986*, edited by J B Harborne, (Chapman & Hall, London), **1993**, pp. 117-238.

3 Thammanna, Narayana Rao K & Madhava Chetty K, *Angiospermic wealth of Tirumala*, (TTD Press, Tirupati), **1994**, p. 49.

4 Mabry T J, Markham K R & Thomas M B, *The Systematic identification of Flavonoids*, (Springer-Verlag, New York), **1970**, pp. 156-66.

5 Kozawa M, Morita N, Baba K & Hata K, *Chem Pharm Bull*, **25**, **1977**, 515.

6 Jayaraman I, Ghanim A & Khan H A, *Phytochemistry*, **19**, **1980**, 1267.

7 Dagne E, Bekele A & Waterman P G, *Phytochemistry*, **28**, **1989**, 1897.

8 Ognyanov S & Somleva T, *Planta Med*, **38**, **1980**, 279.